
1. Complete the flowchart by filling in each box.

2. 1.35 g of ethylamine gas, $CH_3CH_2NH_2$ ($M_r = 45.0$), is reacted with 20 cm³ of 2.0 mol dm⁻³ hydrochloric acid forming a solution of ethylammonium chloride.

$$CH_3CH_2NH_2(g) + HCI(aq) \rightarrow CH_3CH_2NH_3^+(aq) + CI^-(aq)$$

What is the concentration of ethylammonium chloride in mol dm⁻³?

- **A** 0.03
- **B** 0.67
- **C** 1.50
- **D** 2.00

Your answer [1]

3. This question is about α -amino acids.

Three α -amino acids can react together to form compound $\boldsymbol{\mathsf{E}}$, shown below.

i. How many optical isomers are possible for compound **E**?

ii. A student hydrolyses compound **E** with dilute hydrochloric acid, HCl (aq).

Draw the structures of the organic products formed by this hydrolysis.

[4]

4. *A student intends to synthesise compound **I**.

Compound I

Plan a synthesis to prepare 9.36 g of compound I starting from 2-chloropropanoic acid, CH₃CHC/COOH. The overall percentage yield of compound I from 2-chloropropanoic acid is 64%.

n your answer, inc ippropriate.	clude starting mass o	on z-chloropropar	loic acid, reager	its, conditions an	a equations wn	ere

Additional answer space if required.	
	[6]

5. This question is about the chemistry of aromatic compounds.

Compounds J, K and L, shown below, are structural isomers.

A two-stage synthesis of an amine from compound ${\bf J}$ is shown below.

i. Add the reagents for each stage of this synthesis.

ii. Fill in the equation for the reduction stage of this synthesis.

[1]

[2]